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We investigate spontaneous symmetry breaking in a conformally invariant gravitational
model. In particular, we use a conformally invariant scalar tensor theory as the vacuum
sector of a gravitational model to examine the idea that gravitational coupling may be
the result of a spontaneous symmetry breaking. In this model matter is taken to be
coupled with a metric which is different but conformally related to the metric appearing
explicitly in the vacuum sector. We show that after the spontaneous symmetry breaking
the resulting theory is consistent with Mach’s principle in the sense that inertial masses
of particles have variable configurations in a cosmological context. Moreover, our
analysis allows to construct a mechanism in which the resulting large vacuum energy
density relaxes during evolution of the universe.

KEY WORDS:

1. INTRODUCTION

One of the interesting possibilities concerning the origin of gravitational cou-
pling is that it may be the result of an invariance breaking of some fundamental
symmetry of nature. In recognition of such a symmetry, the first possibility may be
that like other fundamental interactions, the coupling constant of gravitational in-
teraction has its origin in a spontaneous symmetry breaking at some appropriately
energy scales. In fact, Zee (1979) has employed a scalar tensor theory to show
that a spontaneous symmetry breakdown at Planck scale would lead to a gravita-
tional coupling as suggested by general relativity. In this approach, one recognizes
two problems: firstly, the model seems not to be consistent with Mach’s princi-
ple in the sense that after the symmetry breaking the model reduces to general
relativity and specifically the gravitational coupling is given by the gravitational
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constant.2 The implication is that scalar tensor theories motivated by Mach’s
principle (Brans and Dicke, 1961) have no relevance at energy scales lower than
the Planck scale. Secondly, it is well known that the proposed symmetry breaking
leads to the appearance of a vacuum energy density which is enormously larger
than the experimental upper limit (Weinberg, 1989).

There is another possibility about the kind of symmetry which may be of sig-
nificance. Since gravitational coupling is a dimensional coupling, its strength can
be changed by a unit transformation. Thus, the corresponding symmetry which
is expected to have important role is conformal symmetry. One may study an
invariance breaking effect in a conformally invariant gravitational model by intro-
ducing a constant mass scale. It has been shown (Deser, 1970; Salehi, 1998; Salehi,
and Bisabr, 2000) that such an invariance breaking also leads to a gravitational
coupling with the same strength as used in general relativity.

Our main purpose in the present work is to keep the idea that the gravitational
coupling arises from an invariance breaking effect with special concern for ad-
dressing the two aforementioned problems. We shall study spontaneous symmetry
breaking in a conformally invariant scalar tensor theory in which the scalar field
has a quartic self-interaction term. The basic ingredient in the theory is that we take
the two metric tensors describing the gravitational and the matter parts to belong to
different conformal frames. We then consider the conformal factor relating the two
metric tensors as a dynamical field. Such a dynamical field is basically imposed in
our model to make a dynamical distinction between the two unit systems usually
used in cosmology and elementary particle physics. We have already emphasized
the significant role of this dynamical distinction in construction of a mechanism
to reduce a large cosmological constant during evolution of the universe (Bisabr
and Salehi, 2002). In the present work, we intend to investigate the role of con-
formal symmetry in a scalar tensor theory that undergoes spontaneous symmetry
breaking. We argue that if the theory is taken to be conformally invariant, after the
spontaneous symmetry breaking it remains consistent with the spirit of Mach’s
principle. We also show that the resulting vacuum energy density appears as a
decaying cosmological constant.

We organize this paper as follows: In Section 2, we first offer a brief review
of the model proposed by Zee (1979). In Section 3, we use a gravitational model
which is conformally invariant. We argue that there is an ambiguity concerning
the coupling of matter systems to such a model. In general, matter systems should
be coupled to the metric which is conformally related to that describing the
vacuum sector. In Section 4, we consider spontaneous symmetry breaking in this
gravitational model. We discuss the problem of the emergence of a large vacuum

2 It should be remarked that Mach’s idea on the nature of inertia has found a limited expression in
general relativity. For a detailed discussion see, for example, Brans and Dicke (1961).
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energy density and consistency of the model with Mach’s principle. In Section 5,
we outline our results.

Throughout the following we shall use units in which h̄ = c = 1 and the
signature is (− + ++).

2. A BRIEF REVIEW OF ZEE’S MODEL

Spontaneous symmetry breaking is one of the key ideas in elementary par-
ticle physics which is expected to lead to unification of strong, weak and elec-
tromagnetic interactions. In order to incorporate this mechanism into gravity, Zee
proposed (1979) a modification of the Einstein–Hilbert action used in general
relativity. The proposed model is

S = −
∫

d4x
√−g

{
1

2
φ2R + 1

2
gµν∇µφ∇νφ − V (φ)

}
+ Sm(gµν, φ), (1)

where φ is a scalar field with a potential V (φ), R is the curvature scalar, ∇µ denotes
covariant differentiation, and Sm(gµν, φ) is the matter field action. In this gravita-
tional system, φ−2 characterizes the gravitational coupling. Moreover, the scalar
field φ plays the role of the Higgs field and should therefore have interaction with
the matter part of the model so that in the previous action Sm(gµν, φ) includes φ.

Variation of the action (1) with respect to gµν and φ gives, respectively,

φ2Gµν = T[m]µν + T[φ]µν, (2)

�φ − φR + ∂V

∂φ
= 1√−g

δSm(gµν, φ)

δφ
, (3)

where

T[m]µν = − 2√−g

δSm(gµν, φ)

δgµν
, (4)

and

T[φ]µν = −
(
∇µφ∇νφ − 1

2
gµν∇γ φ∇γ φ

)
− 1

2

(
gµν�φ2 − ∇µ∇νφ

2
) − gµνV (φ).

(5)
Here � ≡ gµν∇µ∇ν and Gµν is the Einstein tensor. The potential V (φ) usually
contains a quartic self-interaction and an imaginary mass term. This suffices to
give minima to the potential for some nonvanishing values of φ. If the degenerate
vacuum is φ = v with v being a constant, the spontaneous symmetry breaking
then results in a gravitational coupling with the same strength as v−2. This gives
the gravitational constant if one takes the mass scale v to be of the same order
of the Planck mass. This means that the spontaneous symmetry breaking should
take place at Planck scale. In lower energy scales, however, there is no difference
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between this model and general relativity, since with φ = v the field equations (2)
and (3) reduce to the Einstein field equation, namely,

Gµν + v−2V (v)gµν = v−2T[m]µν. (6)

It is well known that such a symmetry breaking induces a large vacuum energy
density in the gravitational equations. This problem is not, however, addressed
in the Zee’s model, since it is assumed that V (v) = 0. In the following, we shall
recognize this vacuum energy problem as one of the two main problems affecting
the model described by the action (1). The other problem is that this model is
not consistent with Mach’s principle, since it proposed that gravity is described
by general relativity in all energy scales lower than the Planck scale (Brans and
Dicke, 1961).

3. THE MODEL

We consider a scalar tensor theory consisting of a real scalar field φ, described
by the action functional3

S = −1

2

∫
d4x

√−g

{
gµν∇µφ∇νφ + 1

6
φ2R + λφ4

}
, (7)

where λ is a dimensionless coupling constant. This action is invariant under
conformal transformations

ḡµν = e2σ gµν, (8)

φ̄ = e−σ φ, (9)

where σ is a dimensionless spacetime function. When this action is taken as the
vacuum sector of a gravitational model, one encounters an inherent ambiguity
concerning the incorporation of matter systems. In fact, since the vacuum sector
is conformally invariant, it is not possible to make any distinction between two
different conformal frames and all the frames must be considered as dynamically
equivalent. In this situation, it is not clear to which of these conformal frames,
or the corresponding metric tensors, the matter systems should be coupled. To
consider the most general case, we take the matter systems to be coupled with the
metric ḡµν rather than gµν which are conformally related due to (8). In this way,
we take into account all the dynamical implications of different conformal frames.
We therefore write the action (7) in the form

S = −1

2

∫
d4x

√−g

{
gµν∇µφ∇νφ + λφ4 + φ2(gµν∇µσ∇νσ + 1

6
R)

}

3 This action is identical to the gravitational part of (1), if 1
2 φ2R is replaced by 1

12 φ2R and V (φ) is
taken to be − 1

2 λφ4.
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+ Sm(ḡµν, φ), (10)

where Sm(ḡµν, φ) is the matter action containing some matter field variables,
including the gauge fields of the standard model, coupled to the metric ḡµν . We
shall consider the case that the matter action interacts with the scalar field φ.
This is necessary for interpretation of the scalar field as a Higgs field. We have
also taken the previous action to involve a kinetic term for σ to account for its
dynamical contributions. In this case, the vacuum sector of the action (10) is still
conformally invariant, since σ as a dimensionless function does not change under
conformal transformations.

Variation of the action (10) with respect to gµν , φ and σ , yields,

Gµν − 3λφ2gµν = 6φ−2(Tµν(ḡµν) + τµν) + 6tµν, (11)

� φ − 1

6
Rφ − 2λφ3 − φ∇γ σ∇γ σ = − δ

δφ
Sm(ḡµν, φ), (12)

∇µ(
√−gφ2gµν∇νσ ) = √−ggµνTµν(ḡµν), (13)

where

Tµν(ḡµν) = 2√−g

δ

δgµν
Sm(ḡµν, φ), (14)

and

τµν = −(∇µφ∇νφ − 1

2
gµν∇γ φ∇γ φ) − 1

6
(gµν� − ∇µ∇ν)φ2, (15)

tµν = −(∇µσ∇νσ − 1

2
gµν∇γ σ∇γ σ ). (16)

We would like to consider breakdown of the conformal invariance in the action
(10). Therefore, we add a term such as

−1

2

∫
d4x

√−gm2φ2, (17)

to this action with m being a constant mass scale. In this case, Equations (11) and
(12) change to

Gµν − 3(m2 + λφ2)gµν = 6φ−2(Tµν(ḡµν) + τµν) + 6tµν, (18)

� φ − 1

6
Rφ − m2φ − 2λφ3 − φ∇γ σ∇γ σ = − δ

δφ
Sm(ḡµν, φ), (19)

Looking at the gravitational equation (18) one infers from the sign of the mass term
that it has a negative contribution to vacuum energy density. This feature seems to
be generic to all scalar tensor theories (namely theories that consider a scalar field
with nonminimal coupling to gravity) which entail a massive scalar field. The sign
of this mass term can however be changed by introducing a constant mass scale
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such as µ with µ2 = −m2. It is important that this induces spontaneous symmetry
breaking in the action (10).4 In this case, the potential of the scalar field can be
written as U (φ) = −µ2φ2 + λφ4. The minimum of this potential is determined
by the conditions

dU

dφ
= −2µ2φ + 4λφ3 = 0, (20)

and

d2U

dφ2
= −2µ2 + 12λφ2 > 0, (21)

where λ > 0. The relation (20) has nonzero solutions φ2
0 = µ2

2λ
minimizing the

potential at U (φ0) = −µ4

4λ
. The gravitational coupling is then given by φ−2

0 ∼ λµ−2.

This is the gravitational constant if µ ∼ λ
1
2 mp with mp ∼ G− 1

2 being the Planck
mass. Note that the energy scale at which the spontaneous symmetry breaking
takes place is not necessarily the Planck scale. It is given by µ which depends on
the precise value of the coupling constant λ.

For φ = φ0, the action (10), together with (17) and µ2 = −m2, reduces to

S = − 1

16πG

∫
d4x

√−g{R − 2
 + 6gµν∇µσ∇νσ } + Sm(ḡµν), (22)

where 
 = 3
2µ2. It is clear that the result of the spontaneous symmetry breaking

in (10), namely the action (22), is very different from that obtained by the action
(1). In the action (22), the metric tensors in the gravitational and the matter parts
belong to different conformal frames and the conformal factor itself appears as a
dynamical field. The consequences of such a coupling are discussed in the next
section.5

4. MACH’S PRINCIPLE AND THE COSMOLOGICAL CONSTANT

When a constant mass scale such as m2 (or −µ2) is introduced into the
gravitational part of the action (10), the conformal invariance is broken and a
particular conformal frame (or unit system) is singled out in terms of the values
attributed to the dimensional quantities. In general, the use of two different unit
systems are conventional. On one hand, the gravitational constant as a dimensional
coupling characterizes a unit system usually used in cosmology which is referred
to as the cosmological frame (Bisabr and Salehi, 2002). On the other hand, there
is a particle unit system used in elementary particle physics and is defined in

4 Note that µ appears as a tachyonic mass in the field equation (19).
5 The coupling of matter systems with a metric which is conformally related to the background metric

tensor is previously used in different contexts, see for example, Cho (1992), and Damour et al. (1990).
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terms of Compton wavelength of a typical elementary particle. It is important to
note that one usually assumes that these two unit systems are related by a global
unit transformation. This means that they are taken to be indistinguishable up to
a constant conversion factor in all spacetime points. Such a unit transformation
is obviously devoid of any dynamical implication. Here we consider a local unit
transformation (Bekenstein and Meisels, 1980; Dicke, 1962) which requires that
the two different unit systems be interrelated by a spacetime dependent conversion
(or conformal) factor. This gives a dynamical meaning to changes of unit systems
and seems to be more consistent with Mach’s principle. The reason for this is
discussed in the following paragraphs.

According to Mach’s principle, one may attribute inertial forces experienced
in a given point of spacetime to the gravitational forces due to distant accelerated
matter systems. By implication, the inertial mass of a particle should depend on
the distribution of matter around that particle. As a consequence, one expects that
inertial masses have different values in different spacetime points.

On the other hand, there is an inherent ambiguity concerning measurement
of changes of a dimensional quantity. In general, the value of a dimensional
quantity not only may change in a given unit system but it may also change
due to changes of the unit system by which the quantity is measured. There is
not however any direct way to distinguish between these two types of changes.
Thus, it is only meaningful to compare mass ratios, as dimensionless quantities,
rather than mass itself at different spacetime points. For construction of such a
dimensionless quantity one may take proportion of the inertial mass of a typical
elementary particle, M , and the Planck mass, namely,

M(G)1/2 = n, (23)

where n is a dimensionless number. If one takes n to vary, as suggested by Mach’s
principle, one may consider two possibilities depending on attribution of these
variations to either M or G. In the particle frame, one takes M as a constant
and G as varying, while in the cosmological frame inertial masses of elementary
particles are taken to be varying and G is regarded as a constant. It is now clear
from the discussion that these two unit systems should be taken to be related by a
spacetime dependent conversion factor in order to respect the precise statement of
Mach’s principle. It should be remarked that from a physical point of view there
seems to be no fundamental difference between the two possibilities, although their
precise formulations may need theories which have quite different mathematical
structures. In the present work, we shall not concern with this issue and only the
physical content of the dynamical distinction of the two unit systems is brought
into focus.

Now we turn to interpret the action (22). For doing this, we recall that when
the action (1) undergoes spontaneous symmetry breaking both the gravitational
coupling and the inertial masses have constant configurations contrary to the
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statement of Mach’s principle. On the other hand, the appearance of σ as a dy-
namical field in the action (22) implies that inertial masses of elementary particles
have variable configurations even though the gravitational coupling takes a con-
stant value.6 This is due to the fact that matter is coupled to gravity through the
metric ḡµν which is conformally related to gµν . We emphasize that this feature
is a direct consequence of the conformal invariance of the vacuum sector of the
action (10) which gives plausibility to consider such a coupling.

As the last point, we investigate the appearance of 
 in (22) as a large effective
vacuum energy density. We remark that this does not lead to the cosmological
constant problem in the context of our model which assumes that the cosmological
and the particle unit systems are dynamically distinct. To clarify this point we
first take the two metric tensors gµν and ḡµν to describe the cosmological and
the particle frames, respectively. They are related by gµν = e−2σ ḡµν . Such a
distinction should also be imposed on the dimensional quantities 
 and 
̄, namely
the value of vacuum energy density in the cosmological and the particle unit
systems. According to the dimension of 
 (the squared mass) this two quantities
are related by 
 = e2σ 
̄. Thus, 
 is not actually a constant in the cosmological
frame and the action (22) should be written as

S = − 1

16πG

∫
d4x

√−g{R − 2
̄e2σ + 6gµν∇µσ∇νσ } + Sm(ḡµν), (24)

which leads to the field equations

Gµν + 
̄e2σ gµν = 8πGTµν(ḡµν) + 6tµν, (25)

�σ + 1

3

̄e2σ = 4π

3
GgµνTµν(ḡµν). (26)

In these equations the exponential coefficient for 
̄ emphasizes the dynamical
distinction between the cosmological and the particle unit systems. One intuitively
expects that this distinction be indistinguishable immediately after the spontaneous
symmetry breaking. This means that gµν and 
 coincide with their corresponding
quantities in the particle unit system, namely ḡµν and 
̄, at sufficiently early
times. When the universe expands, cosmological scales enlarge and this distinction
increases so that e−2σ must be an increasing function of time in an expanding
universe. It follows that 
 characterizing the effective cosmological constant in
the cosmological frame damps due to the cosmic expansion (Bisabr and Salehi,
2002).

6 It is important to note that when the conformal invariance of the gravitational part of (10) is broken
the resulting theory automatically chooses the cosmological frame. This is a direct consequence of
the spontaneous symmetry breaking in the action (10) that gives a constant configuration to the scalar
field.
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As an illustration, we first combine (26) with the trace of (25) that gives

�σ + ∇γ σ∇γ σ + 1

6
R − 1

3

̄e2σ = 0. (27)

If we write this equation in a spatially flat Friedmann–Robertson–Walker space-
time, we obtain7

σ̈ + 3
ȧ

a
σ̇ + σ̇ 2 − ä

a
− ȧ2

a2
+ 1

3

̄e2σ = 0, (28)

where a(t) is the scale factor and the overdot denotes differentiation with respect
to time.

Now assuming that the universe follows a power-law expansion, namely that
ȧ
a

∼ t−1, we use the ansatz

e−σ = σ0t, (29)

which satisfies Equation (28) with σ0 ∼
√


̄. The vacuum energy density in
the cosmological frame is then 
 = 
̄e2σ ∼ t−2, which is consistent with the
observational upper limit.

5. CONCLUDING REMARKS

We have investigated the idea that gravitational coupling may be the result
of a mechanism involving the breakdown of some fundamental symmetry of
nature. Two kinds of symmetry breaking seem to be relevant on the subject:
firstly, it is natural to think about spontaneous symmetry breaking analogous to
the origin of coupling constants corresponding to other fundamental interactions
and secondly, a conformal symmetry breaking motivated by the fact that the
gravitational coupling is a dimensional coupling.

We discussed spontaneous symmetry breaking in a conformally invariant
scalar tensor theory, in which the scalar field has a quartic self-interaction, by
introducing a constant tachyonic mass scale. We have shown that a spontaneous
symmetry breaking in the model would lead to a gravitational coupling as sug-
gested by general relativity. It should be remarked that this symmetry breaking
may take place in energy scales much lower than the Planck scale when λ << 1.

We emphasize that our analysis allows to avoid the two problems afflict
the model proposed by Zee, the action (1), namely inconsistency with Mach’s
principle and the cosmological constant problem. This is basically due to the
fact that in the action [?] we couple the matter to a metric which is conformally
related to that describing the gravitational part. In our approach, such a coupling
is motivated by the fact that the gravitational part is conformally invariant and

7 Due to homogeneity and isotropy of the universe σ is taken to be only a function of time.
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does not dynamically distinguish between different metric tensors related by the
conformal transformation (8). The important feature of this coupling is that it gives
variable configurations to all the mass scales introduced by elementary particle
physics in the cosmological frame. In particular, contributions of these mass scales
in vacuum energy density are so that they decrease during evolution of the universe.

We point out that the nontrivial behavior of the conformal factor in our model
may have important role in cosmology. For instance, it may act as a quintessence
describing the acceleration of the universe in the present epoch (Bisabr, 2004).
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